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Abstract8

The ocean state off Oregon-Washington, U.S. West coast, is highly vari-9

able in time. Under these conditions the assumption made in traditional10

4-dimensional variational data assimilation (4DVAR) that the prior model11

(background) error covariance is the same in every data assimilation (DA)12

window can be limiting. A DA system based on an ensemble of 4DVARs13

(En4DVar) has been developed in which the background error covariance is14

estimated from an ensemble of model runs and is thus time-varying. This15

part describes details of the En4DVar method and ensemble statistics ver-16

ification tests. The control run and 39 ensemble members are forced by17

perturbed wind fields and corrected by DA in a series of 3-day windows.18

Wind perturbations are represented as a linear combination of empirical or-19

thogonal functions (EOFs) for the larger scales and Debauchies wavelets for20

the smaller scales. The variance of the EOF expansion coefficients is based21

on estimates of the wind field error statistics derived using scatterometer22

observations and a Bayesian Hierarchical Model. It is found that the vari-23

ance of the wind errors relative to the natural wind variability increases as24
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the horizontal spatial scales decrease. DA corrections to the control run and25

ensemble members are calculated in parallel by the newly developed, cost-26

effective cluster search minimization method. For a realistic coastal ocean27

application, this method can generate a 30% wall time reduction compared28

to the restricted B-conjugate gradient (RBCG) method. Ensemble statis-29

tics are generally found to be consistent with background error statistics. In30

particular, ensemble spread is maintained without inflating. However, sea-31

surface height background errors can not be fully reproduced by the ensemble32

perturbations.33

Keywords: 4DVAR, Coastal ocean, Data assimilation, Ensemble,34

Numerical modelling, USA, Oregon35

1. Introduction36

Data assimilation (DA) is a procedure, e.g., used in meteorology and37

oceanography, in which the output of a numerical model is combined with38

observations to find the most-likely estimate for the true state of the system.39

DA algorithms require specification of the error statistics for the model and40

the observations. These statistics are often assumed to follow a multidimen-41

sional normal distribution with zero mean and a covariance that is static in42

time, i.e., the same from one assimilation cycle to the next. An example43

of such a DA system is the Oregon State University coastal ocean forecast44

system in an area offshore Oregon-Washington (OR-WA) at the U.S. West45

coast (Kurapov et al., 2011; Pasmans et al., 2019; Yu et al., 2012). This sys-46

tem applies the 4DVAR algorithm in a series of consecutive 3-day windows.47

Initial conditions at the beginning of each window are corrected to yield48
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the nonlinear analysis that fits observations in this window. The simulation49

is then continued for another three days to provide the forecast. Summer50

dynamics in this region are dominated by the wind-forced upwelling and re-51

laxation and the outflow of the Columbia River (Hickey et al., 2005, 2010;52

Huyer, 1983; Liu et al., 2009). In such a dynamic environment it is unlikely53

that the stationarity assumption on the error statistics holds. In particular,54

the temperature-salinity model error covariance will strongly depend on the55

presence of the river plume.56

Over the past three decades, ensemble methods have been developed in57

meteorology to deal with non-stationarity in the error statistics. In these58

methods, the forecast (“background”) error covariance is estimated from an59

ensemble of perturbed model runs. One of the earliest, and most popular,60

examples of such a method is the ensemble Kalman filter (Anderson, 2001;61

Bishop et al., 2001; Evensen, 1994; Lermusiaux and Robinson, 1999). More62

recently in meteorology, these ensemble Kalman filter systems have been com-63

bined with 4DVAR systems in which the background error covariance used64

by the 4DVAR system is estimated using the ensemble from the Kalman filter65

system (Buehner et al., 2009; Clayton et al., 2013; Zhang and Zhang, 2012).66

In this manuscript, we describe our approach to using an ensemble of 4DVARs67

(En4DVar) to provide a state-dependent background error covariance. This68

methodology will be tested with the OR-WA 4DVAR system. Generaliza-69

tion of the ensemble methodology to an ensembles of 4DVARs is nontrivial70

for three reasons. First, 4DVAR is computationally intensive. Calculation71

of a DA correction requires minimization of a cost function, or equivalently,72

solving a linear system with some symmetric and positive definite matrix73
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A. This matrix is large and generally not available in explicit form. Instead74

only the algorithm for the product of A and a vector is at hand. An iterative75

method, e.g., the restricted B-conjugate gradient (RBCG) algorithm, is used76

to find an approximate solution of this system. Each iteration requires prop-77

agation of the tangent linear (TL) model over the analysis period, forward78

in time, and its adjoint counterpart (ADJ), backward in time. For practical79

systems, the 4DVAR cycle can take 10-100 times as much time as a single80

forward model run. Second, En4DVar only compounds this problem as it81

requires running the computationally intensive 4DVAR algorithm for each82

ensemble member. Third, the ensemble has to be initialized and evolved in83

such a manner that its covariance is representative of the background error84

covariance.85

Over the last decade, much effort has been put into overcoming these chal-86

lenges. Several solutions have been found. Instead of applying full 4DVAR87

to each ensemble member, it has become customary to calculate a low-rank88

approximation to A, using e.g. Ritz pairs found by the Lanczos algorithm89

(Trefethen and Bau, 1997). In the Ensemble-Variational Integrated Localized90

Data Assimilation (EVIL) methodology (Auligné et al., 2016), minimization91

of the cost function is only carried out for the control, or deterministic,92

model run. From the Ritz vectors obtained as a by-product from this min-93

imization, a low-rank approximation of A is constructed. The inverse of94

this approximation is then used to solve the linear system for the ensemble95

members. Desroziers and Berre (2012); Lorenc et al. (2017) followed similar96

approaches, but use the Ritz pairs solely to construct a preconditioner. Ad-97

vances have also been made to speed up the 4DVAR minimization algorithm98
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itself. Parallelisation can be applied to the TL and ADJ models by assigning99

the calculations for different parts of the domain to different processor cores,100

as well as to the minimization algorithm. The former is currently standard101

practice, while the latter is still an area of active research. One popular102

approach is to use an ensemble of concurrently produced nonlinear model103

runs to generate approximations of the TL and ADJ model. Examples of104

this approach are 4DEnVar (Amezcua et al., 2017; Desroziers et al., 2014;105

Gustafsson and Bojarova, 2014; Liu et al., 2008; Tian et al., 2017) and the106

Ensemble Kalman Smoother-4DVAR (EKS-4DVAR) (Mandel et al., 2016).107

4DEnVar and EKS-4DVAR can be used to minimise the same cost func-108

tion, but their implementation differs in two major ways. First, 4DEnVar109

uses all observations within a DA window to correct the initial condition,110

while EKS-4DVAR processes the observations in batches with each batch111

generating corrections to the model at, and prior to, the batch time. Sec-112

ond, both in En4DVar and EKS-4DVAR the propagation of perturbations113

from the background state to the next time step and into the observation114

space is carried out by a finite-difference scheme involving the nonlinear115

model and nonlinear sampling operators. The finite-difference scheme in116

EKS-4DVAR uses a smaller step size and thus better approximates the tan-117

gent linear model and linearised sampling operators used in classic 4DVAR.118

Background error localization in these methods is non-trivial. In absence of119

a TL model to propagate the localised background error covariance forward120

in time, localization is often assumed to be static in these methods. For121

limited-size ensembles with non-dense observation networks this can lead to122

a decrease in forecast performance compared to variational methods that do123
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use TL and ADJ models (Poterjoy and Zhang, 2015; Poterjoy et al., 2016).124

A similar problem is encountered when attempting to implement a hybrid125

background covariance, a linear combination of an ensemble and climato-126

logical, static covariance, in these 4DEnVar systems. The use of a hybrid127

background covariance was found to improve the accuracy of the forecasts128

produced by traditional 4DVAR systems (Clayton et al., 2013; Kuhl et al.,129

2013). More specifically, it was found that the best fit to the assimilated130

observations is achieved when the climatological part makes up the major131

part of the background covariance (Clayton et al., 2013; Lorenc and Jardak,132

2018). However, without TL and ADJ models to propagate the covariance133

back and forth in time, hybrid 4DEnVar failed to provide the same benefits134

(Lorenc et al., 2015). One different approach to parallelisation that does not135

suffer from these problems is taken by Rao and Sandu (2016) and Fisher136

and Gürol (2017). They make use of the TL and ADJ model and parallelize137

the 4DVAR minimization algorithm in time. This is done by dividing the138

analysis period into separate time intervals. The DA correction is found by139

minimizing a cost function that consists of the sum of the 4DVAR cost func-140

tions for each interval plus an additional term representing the constraint141

that the correction should be continuous going from one interval to another.142

Another recent approach that circumvents the problems with localisation and143

hybrid-covariances encountered in En4DVar is the Localized Ensemble-Based144

Tangent Linear Model (LETLM) in which the matrix for the tangent linear145

model is not constructed using a linearised version of the extensive nonlinear146

model, but retrieved from a simple regression against the ensemble members147

(Allen et al., 2017; Bishop et al., 2017; Frolov and Bishop, 2016; Frolov et al.,148
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2018).149

Yet another alternative approach, explored in this paper, is to try to150

accelerate the linear system solver by using several search directions in par-151

allel. The current OR-WA system uses the restricted B-conjugate gradient152

method, RBCG (Gürol et al., 2014). In this method, an approximation to the153

linear system solution is sought in a low-dimensional Krylov space and the154

search space dimension is equal to the number of iterations. Several generic155

iterative solvers have already been developed in which the search space di-156

mension grows faster than that. Consequently, less iterations are necessary157

to produce a good approximation to the solution. Among these are the En-158

larged Krylov space method (Grigori et al., 2016) in which the search space159

is expanded by multiple directions per iteration simultaneously or the Aug-160

mented Krylov space methods where extra search directions are added to161

the system coming either from an earlier attempt to solve a similar system162

(Erhel and Guyomarc’h, 2000; Morgan, 1995), or from the eigenvectors of163

a preconditioner (Kharchenko and Yeremin, 1995), or from an attempt to164

solve the system with a different initial residual (Chapman and Saad, 1996).165

Additional search directions can also lie outside the Krylov subspace. E.g.166

Yaremchuk et al. (2017) uses model-based Empirical Orthogonal Functions167

(EOFs) to create search directions. Once a general search space is defined,168

the approximation can be defined as the vector in the search space that has169

the smallest distance to the exact solution in some appropriately chosen norm170

(Brezinski, 1999).171

In the En4DVar system proposed in this this paper, the EVIL method172

(Auligné et al., 2016) is parallelized using a new variation of the enlarged173
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and augumented Krylov space methods. Two principal and novel elements174

of the En4DVar will be described. The first is the cluster search method,175

used to enlarge the search space at each iteration at a price of running a176

relatively small number of TL-ADJ applications in parallel. The second is177

the use of a Bayesian Hierarchical Model to estimate the magnitude of the178

wind forcing perturbations for the ensemble members. Part II of this study179

(Pasmans et al., in preparation) will include (a) a comparison of the ensemble180

background error covariance produced by the En4DVar system and the static181

background error covariance based on the balance operator and (b) compar-182

ative tests of En4DVar and traditional 4DVAR implemented in the OR-WA183

coastal ocean forecast system. This paper is organized as follows: section 2184

describes the experimental setup and the layout of the En4DVar system.185

Derivation of the cluster search method is presented in section 3. Wind per-186

turbations for the ensemble members are discussed in section 4. In section 5187

we check if the En4DVar statistics are representative of the background error188

statistics. Discussion and conclusions are presented in section 6.189

2. The En4DVar System190

Pasmans et al. (2019) describe the OR-WA coastal ocean forecast sys-191

tem in every detail, implemented as standard 4DVAR with a static back-192

ground error covariance. A short summary is only provided here. The non-193

linear model dynamics are described by the Regional Ocean Modeling Sys-194

tem (ROMS, www.myroms.org) integrating three-dimensional, fully nonlin-195

ear, hydrostatic, Boussinesq equations featuring advanced numerics (Shchep-196

etkin and McWilliams, 2003, 2005). The model domain is shown in Fig-197
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Figure 1: The model domain and observations assimilated in the window of 26-28 August,

2011: (a) high-frequency radar (HFR) daily-averaged radial velocity components, (b) sea-

surface temperature (SST) and (c) sea-surface height (SSH, absolute dynamic topography

minus the mean along each satellite track).

ure 1. The model resolution is approximately 2 km in the horizontal and 40198

terrain-following layers in the vertical direction. The computational grid has199

310 × 522 points. Non-tidal boundary conditions are taken from the global200

1/12◦ Hycom-NCODA analyses (COAPS, 2015). Tidal forcing is added along201

the open boundaries (Egbert and Erofeeva, 2002, 2010). Atmospheric surface202

forcing is calculated based on the bulk flux algorithm (Fairall et al., 2003) us-203

ing the 12-km resolution Northern American Mesoscale (NAM) model anal-204

ysis fields (NOAA, 2011b). The fresh water discharge from the Columbia205

River, Fraser River, and 15 small rivers in Puget Sound is also included. Each206
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hour the three-dimensional ocean state calculated by the model is saved to207

disk.208

While standard ROMS includes TL and ADJ models, these are tightly209

integrated into the code such that implementing the En4DVar directly into210

ROMS was too challenging for us as the users. Instead, we utilize the stand-211

alone TL and ADJ AVRORA codes developed in-house (Kurapov et al.,212

2009, 2011; Yu et al., 2012) and integrate these with the nonlinear ROMS213

and other components of the En4DVar via Linux shell scripts, similarly to214

how it is done in the present OR-WA operational forecast system. The TL215

and ADJ runs are performed on a coarser, 4-km resolution model grid and216

their output is interpolated to and from the 2-km model grid.217

All computations have been carried out on the COMET cluster with218

computer allocations made available through the XSEDE framework (Towns219

et al., 2014). Both the nonlinear ROMS and TL-ADJ AVRORA codes are220

run using message passing interface (MPI) parallelisation. The model grid221

is divided into horizontal tiles and computation in the interior of each tile is222

performed on a separate processor core. Owing to a relatively small grid size,223

a small number of Ncores = 6 tiles are used for each instance of the ADJ and224

TL model. More nodes are available to us, and later in this paper we discuss225

how these can be used to speed up the iterative minimization algorithm.226

In this paper results from two experiments are compared, Ens and No DA.227

In experiment Ens, the En4DVar system is used to run M = 40 instances228

of the model forward in time. In the discussions below the run with index229

m = 0 is referred to as the control run, while instances m = 1, 2, . . . ,M − 1230

are referred to as ensemble members. Since the dynamics in this region231
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are dominated by the wind forcing, we assume that the errors in the wind232

velocity are the dominant model error source. To include this error into the233

error statistics, the nonlinear forecasts for each ensemble member are run234

with perturbed wind velocities as detailed in section 4. It will be evaluated235

in section 5 whether the addition of these perturbations alleviates the need for236

the customary ensemble inflation (Anderson, 2001; Anderson and Anderson,237

1999; Hamill et al., 2001). No wind perturbations are added to the control238

run. In our system, the analyses and forecasts from the unperturbed control239

run are considered to provide the best estimate of the ocean state. Unless240

explicitly stated otherwise, the control DA run is compared with the results241

from experiment No DA in section 5. Since no perturbations are added to the242

control run, the probability distributions of the errors in the control run will243

deviate from that in the ensemble members. Therefore the control run is not244

utilized in the calculation of B. The ensemble members are all initialized from245

the same no-DA model output on 10 March 2011 and propagated forward246

in time without DA using the perturbed winds thus generating an ensemble247

of perturbed ocean states on 19 April 2011. Both Ens and No DA cases are248

then run and compared over the period from 19 April 2011 to 1 October249

2011.250

The set of observations for assimilation includes radial surface currents251

from high-frequency radars (HFR), alongtrack altimetry, and satellite sea-252

surface temperature (SST). Although the model includes tides, mainly to253

include their effect on river and ocean water mixing, our focus is on correct-254

ing subtidal variability. Surface tidal currents can be dominanted by non-255

stationary internal tides (e.g. Kurapov et al., 2003; Osborne et al., 2011) that256

11



are poorly predictable and poorly constrained by the available data. At the257

same time the daily-averaged HFR velocity data present a useful constraint258

on the 3-day ocean forecasts (Yu et al., 2012). Following our practice in the259

OR-WA system, we assimilate daily averaged HFR observations, matching260

those to the daily-averaged model outputs. Altimetry observations can suffer261

from large errors in the specification of the geoid. To suppress these and the262

tidal errors in the DA, we assimilate differences from the mean along-track263

SSH averaged over 24 hours. Details of the procedure can be found in Ap-264

pendix A. More details on the data and their associated observational error265

variances are described in Pasmans et al. (2019). The only difference here266

is that the level 2 GOES-11 SST (Maturi et al., 2008) is used instead of267

polar-orbiting satellite products. The observational error covariance matrix268

R is diagonal.269

As shown schematically in Figure 2, DA proceeds in a series of 3-day270

windows. At the beginning of each window, the initial conditions for the271

control run and each ensemble member are corrected. Then every model272

starts from the corrected initial conditions and is run forward using the non-273

linear ROMS for the length of the assimilation window (3 days) to obtain274

the analyses and continues for another 3 days to obtain the forecasts. The275

3-day window length is long enough to let the non-tidal dynamics evolve and276

provide dynamically based space and time interpolation of the data. It is277

still short enough such that the correction to the initial conditions at the278

beginning of the DA window impacts forecasts.279

To explain the DA method in more detail, we combine the temperature,280

salinity, sea surface height and horizontal velocity fields at the beginning281
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Figure 2: Overview of the En4DVar system. Panels a, b, and c show the progression of

tasks. In (a), the control run (task 1, solid line) and ensemble members (with the envelope

shown as dashed lines, task 2) are run for six days. The first three days are the analyses

(blue), the last three days are the forecasts (red). In (b), task 3 is B calculation from the

ensemble, and task 4 is the calculation of the DA corrections for the control run and the

ensemble members using information from the observations (black circles). In (c), task 5

are the new six day model runs started from the corrected ocean states.
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of the window and prior to DA into a vector of real numbers of length N :282

x
(m)
b ∈ RN , m = 0, . . . ,M − 1. The vector containing all observations within283

the window is denoted as y ∈ RD. The innovation vector for each ensemble284

member is defined as d(m) = y − HM(x
(m)
b ) + ε(m). Here M(x

(m)
b ) is the285

nonlinear model trajectory started from the initial conditions x
(m)
b and H286

is the collection of data operators. A perturbation ε(m) is added to the287

innovation vector for each ensemble member (m = 1, . . . ,M − 1) to account288

for the uncertainty in the analysis introduced by the presence of observational289

errors (Burgers et al., 1998; Houtekamer and Mitchell, 1998). It is drawn from290

a normal distribution with zero mean and covariance R. An overview of the291

symbols used is included as Appendix B.292

The DA correction to the background state x
(m)
b is denoted as x(m) ∈ RN .293

It is found by minimizing the following cost function for each m (Courtier294

et al., 1994):295

J(x(m)) =
1

2
x(m)TB−1x(m)+

1

2
(d(m)−H M(m)x(m))TR−1(d(m)−H M(m)x(m)).

(1)

Here, M(m) is the TL model, linearised with respect to M(x
(m)
b ). M(m),T

296

is the ADJ model. B is the background error covariance obtained as the297

sample covariance of the ensemble members with localization as described298

in (Pasmans and Kurapov, 2017). To ensure that B represents dynamics299

on relatively slow, subtidal and subinertial temporal scales, each ensemble300

member is time-averaged over the 24h time interval centred at the beginning301

of the DA window, using the last 12h of the analysis and first 12h of the302

forecast from the previous window, before it is used in the calculation of B.303

The minimizer of (1) is sought as a solution of a linear, symmetric and304
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positive-definite system of equations that can take different forms, e.g., de-305

pending on whether the solution is sought in a space of size N or D, and on306

how the system is preconditioned. RBCG proved to be an efficient solver in307

the data space of dimension D with good convergence (Gürol et al., 2014).308

It finds approximations of x(m) that minimize the cost-function in (1) by309

solving the system310

(I + R−1/2H M(m)BM(m),T HTR−1/2)x̂(m) def= Â(m)x̂(m) = d̂(m) (2)

where x(m) = BM(m),TR−1/2x̂(m) and d̂(m) = R−1/2d(m).311

3. Cost Function Minimization312

In this section we discuss several approaches to finding an approximation313

to x̂(m), the solution of (2), and propose the new, computationally efficient314

cluster search algorithm. We recognize that some mathematical details can315

be overwhelming to an educated reader who only wants to grasp the idea.316

For that reason we first provide a “high level” overview in the beginning of317

this session. This is followed by more formal sections 3.1-3.3 where all the318

necessary theoretical and algorithmic details are documented.319

In RBCG, x̂
(m)
i , the i-th iteration approximation to x̂(m), is sought in the320

low-dimensional Krylov subspace Ki(d(m), Â(m)), where321

Ki(z,A) = span(z,Az,A2z, . . . ,Ai−1z). This search space grows by one322

dimension per iteration. Let I ′ be the number of iterations necessary to323

bring x̂
(m)
i within a certain prescribed error margin of x̂(m). Then obtaining324

x̂
(m)
I′ for each m can require a considerable amount of wall time as well as325
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computational resources. Indeed, every iteration requires the multiplication326

of Â(m) with a vector. This demands that for each m a single implementation327

of the ADJ model over the analysis window is run, followed by application of328

B, and the TL model. To carry this out, a total of Ncores×M processor cores329

need to be available in parallel (as described in more detail in section 3.1).330

Faster convergence to the exact solution x̂(m), for each m, could be331

achieved by expanding the space in which x̂
(m)
i is sought with vectors that332

lie outside Ki(d(m), Â(m)). Such vectors can be generated at no extra com-333

putational cost if we, similarly to Auligné et al. (2016), make the assumption334

that335

M(m) ≈M(0) def= M, (3)

and consequently Â(m) ≈ Â(0) def
= Â. In that case, the solution of (2) for336

different m can be combined into one system of equations. For each m, the337

search space will grow by M dimensions per iteration. This will allow to338

approximate x̂(m) with the same target accuracy in I < I ′ iterations using339

the block diagonal CG method (see section 3.2). This approach will poten-340

tially exhibit faster convergence, but would still require the same Ncores×M341

cores per iteration as an ensemble of regular RBCGs. Given presently avail-342

able resources, this method would be feasible for our relatively small OR-WA343

forecast system, but it can become prohibitively expensive for larger forecast344

systems requiring Ncores = O(103) (e.g. Kurapov et al., 2017). For these345

systems, the new cluster search method is introduced (see section 3.3). It346

also depends on the assumption (3) and involves Ns new direction searches347

at every iteration, where 1 ≤ Ns �M . These new search directions are gen-348

erated in parallel, requiring Ncores×Ns cores to be available simultaneously.349
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It serves as a compromise between RBCG and block diagonal CG.350

3.1. RBCG351

Using RBCG (Gürol et al., 2014), x̂
(m)
i satisfies352

x̂
(m)
i ∈ Ki(d̂(m), Â(m)) : ||x̂(m)

i −x̂(m)||E ≤ ||ŵ−x̂(m)||E ∀ŵ ∈ Ki(d̂(m), Â(m))

(4)

I.e., the i-th approximation to x̂(m) can be found as a linear combination353

of the vectors spanning the i-th Krylov space that minimizes the solution354

error in the E-norm ||w||E = (wT B̂(m)Â(m)w)1/2 with B̂(m) = Â(m) − I =355

R−1/2H M(m)BM(m),T HTR−1/2. Then x̂
(m)
i is uniquely determined as the356

E-projection of x̂(m) on Ki(d̂(m), Â(m)):357

x̂
(m)
i = V̂i(V̂

T
i B̂(m)Â(m)V̂T )−1V̂T

i B̂(m)Â(m)x̂(m)

= V̂i(V̂
T
i B̂(m)Â(m)V̂)−1V̂T

i B̂(m)d̂(m) (5)

or alternatively,358

x̂
(m)
i = V̂iT

−1
i (V̂T

i B̂V̂i)
−1V̂T

i B̂(m)d̂(m) (6)

where the column space of V̂i is equal to Ki(d̂(m), Â(m)) and359

Ti = (V̂T
i B̂(m)V̂i)

−1V̂T
i B̂(m)Â(m)V̂i. Here V̂i and Ti depend on m via Â(m)

360

and d̂(m). This yields residuals r̂
(m)
i that are by construction B̂(m)-orthogonal361

to V̂i. We refer to the column vectors of V̂i as the search directions. As x̂
(m)
i362

is a projection, it is independent of the search directions chosen as long as363

they span the same space. In RBCG i + 1-th search direction would be364

chosen to be E-orthogonal, i.e. conjugate, to V̂i. Here the i + 1-th search365

direction is chosen to be equal to r
(m)
i which is B̂(m)-orthogonal to V̂i. I.e.366
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V̂i+1 = [V̂i, r
(m)
i ]. In this case, the E-orthonormalization is contained in367

T−1(V̂T
i B̂(m)V̂i)

−1 in (6). The pseudo-code for this method is included in368

Table C.8.369

3.2. Full Parallelisation: Block Diagonal Conjugate Gradient Method370

If (3) is assumed then Â(m) = Â, B̂(m) = B̂ and (2) for the different m371

can be combined into a single linear system372

ÂX̂ = D̂, (7)

where X̂ = [x̂(0), x̂(1), . . . , x̂(M−1)] and D̂ = [d̂(0), d̂(1), . . . , d̂(M−1)] ∈ RD×M .373

Similar to (6), the i-th approximation X̂i can be found as374

X̂i = V̂i(V̂
T
i B̂ÂV̂i)

−1V̂T
i B̂ÂX̂ = V̂iT

−1
i (V̂T

i B̂V̂i)
−1V̂T

i B̂D̂ (8)

where Ti = (V̂T
i B̂V̂i)

−1V̂T
i B̂ÂV̂i. V̂i = D̂ if i = 1 and V̂i = [V̂i−1, D̂ −375

ÂX̂i] if i > 1. T, V̂i are independent of m. The column space of V̂i is now376

Ki(D̂, Â). The advantage here, compared to RBCG, is that the search space377

for each x̂
(m)
i , spanned by V̂i, now has dimension i ×M instead of i. The378

method results in matrices V̂i that are no longer B̂-orthogonal, but B̂-block379

orthogonal: if v̂p and v̂q are two columns of V̂i then v̂Tp B̂v̂q = 0 if |p−q| ≥M ,380

but might be non-zero otherwise. The estimates X̂i retrieved in this way are381

the same as those found using the block diagonal CG method (O’Leary, 1980)382

with B-preconditioning. The pseudo-code for the block diagonal CG is given383

in Table C.9.384

3.3. Partial Parallelisation: Cluster Search Method385

In order to expand V̂i−1 to V̂i in the block diagonal CG method, M386

applications of Â to a vector are necessary. This will require Ncores × M387
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cores and can be prohibitively expensive for large systems. Here we introduce388

the cluster search method that requires Ns � M concurrent applications of389

Â to create the expansion. In this case, we still look for a solution to (7)390

with X̂i still given by (8) but with V̂i constructed differently. In particular,391

we focus on x̂(0) as it is the control run that will be used to produce the392

operational forecasts and therefore minimization of the error in x̂
(0)
i has top393

priority. To explain how V̂i is constructed, we momentarily assume that the394

eigendecomposition Â = Û0Λ̂
2ÛT

0 with ÛT
0 Û0 = I is available and require395

that: (i) v̂Tp B̂v̂q = 0 if |p − q| ≥ Ns similar to block diagonal CG and (ii)396

the residual for the control run, r̂
(0)
i , is in the column space of V̂i+1 as is the397

case in RBCG for m = 0.398

Define v̂′ = ÛT
0 r̂

(0)
i = ÛT

0 Â(x̂(0) − x̂
(0)
i ), v̂′′ = ÛT

0 d̂(0) = ÛT
0 Âx̂(0) and399

Ûi = Û0 − ÂV̂iT
−1
i (V̂T

i B̂V̂i)
−1V̂T

i B̂Û0. Then400

Û0v̂
′ = r̂

(0)
i = r̂

(0)
0 −Âx̂

(0)
i = r̂

(0)
0 −ÂV̂iT

−1
i (V̂T

i B̂V̂i)
−1V̂T

i B̂r
(0)
0 = Ûiv̂

′′ (9)

To expand V̂i to V̂i+1 we look for Ns new search vectors of the form s(n) =401

ÛiΛ̂
2Pnv̂

′′ with n = 1, 2, . . . , Ns and Pn =
∑

d∈Dn
êd(ê

T
d v̂′′) with êd the402

unit vector in direction d. Here Dn is a subset of {1, 2, . . . , D} such that the403

union of D1, D2, . . . , DNs is {1, 2, . . . , D} and Dp and Dq are disjoint if p 6= q.404

Consequently,
∑Ns

n=1 Pnv̂
′′ = v̂′′. Combined with the equality Û0v̂

′ = Ûiv̂
′′

405

in (9) this then ensures that r̂
(0)
i lies within V̂i+1. Thus search vectors of the406

form s(n) satisfy requirement (ii). Furthermore,407

V̂T
i B̂Ûi = V̂T

i B̂Û0 − V̂T
i B̂ÂV̂iT

−1
i (V̂T

i B̂V̂i)
−1V̂T

i B̂Û0

= V̂T
i B̂Û0 − V̂T

i B̂ÂV̂i(V̂
T
i B̂ÂV̂i)

−1V̂T
i B̂Û0 = 0

(10)

This shows that Ûi is B̂-orthogonal to V̂i and since the Ns new search408
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directions in V̂i+1 are linear combinations of the column vectors of Ûi, they409

satisfy requirement (i).410

For the following we also need to be able to estimate ÛT
0 ÂÛi. For i = 0,411

Ûi = Û0 and so ÛT
0 ÂÛ0 = Λ2, while for i > 0 exact expressions are not412

directly available. Instead we observe that the columns of Ûi are the residuals413

obtained after trying to find a solution to the linear system ÂX′ = Û0 in414

the search space Vi. This system has the exact solution Û0Λ
−2. Here we415

make an ad-hoc assumption that these residuals are, in good approximation,416

multiples of the columns Û0, i.e. Ûi ≈ Û0Ξ with Ξ diagonal. In this case, Ξ417

can be estimated as Ξ2 = ΞT ÛT
0 Û0Ξ ≈ ÛT

i Ûi.418

In RBCG x̂
(0)
i is defined as the vector in the search space span(V̂i) that419

minimizes the error (4) in the E-norm. The novel idea behind cluster search420

is to find a clustering D1, D2, . . . , DNs and the associated Ns new search421

vectors s(n) such that the reduction of the expected error ||x̂(0) − x̂
(0)
i+1||E is422

larger than can be achieved using any other clustering. Using the properties423

of Pn, the estimation Ûi ≈ Û0Ξi, and the orthonormality of Û0, we find424

that the E-norm of the expected error for x̂
(0)
i+1 can be estimated as425

||x̂(0) − x̂
(0)
i −

Ns∑
n=1

αnÛiPnv̂
′′||2E ≈

Ns∑
n=1

∑
d∈Dn

[(1− λ−2d )v′2d − 2αnv
′
dλ

2
d(1− λ−2d )v′′dξd

+α2
nλ

4
d(1− λ−2d )v′′2d ξ

2
d], (11)

where λd and ξd are the d-th element on the diagonal of Λ and Ξ, correspond-426

ingly. To find the minimum of this function, we set the derivative of (11) as427

a function of αn to zero and get428

α̂n = (
∑
d∈Dn

(1− λ−2d )λ4dv
′′2
d ξ

2
d

v′d
v′′dξdλ

2
d

)(
∑
d∈Dn

(1− λ−2d )λ4dv
′′2
d ξ

2
d)
−1 (12)
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=
v′

v′′ξd

1

λ2d

n

, (13)

where ·n denotes the weighted mean over the cluster Dn with weights (1 −429

λ−2d )λ4dv
′′2
d ξ

2
d. Inserting α̂n from (13) back into (11) gives that for our guesses430

of s(1), . . . , s(Ns) the error squared obtains a minimum431

||x̂(0) − x̂
(0)
i −

∑Ns

n=1 α̂nÛiPnv̂
′′||2E

≈
∑Ns

n=1

∑
d∈Dn

(1− λ−2d )v′′2d ξ
2
dλ

4
d[

v′2d
v′′2d ξ2dλ

4
d
− α̂2

n]

=
∑Ns

n=1Wn varn(
v′d

v′′d ξdλ
2
d
)

(14)

with varn the weighted variance over cluster n andWn =
∑

d∈Dn
(1−λ−2d )λ4dv

′′2
d ξ

2
d432

the normalization coefficient for the n-th cluster. The K-means clustering al-433

gorithm (MacQueen, 1967) can now be used to find an approximate cluster-434

ing that approximately minimizes (14). Once K-means produces a clustering,435

s(n) = ÛiΛ̂
2Pnv̂

′′ are known and V̂i+1 = [V̂i, s
(1), . . . , s(Ns)].436

In reality the eigenvalue decomposition of Â is not available. Instead it is437

used that if R and B are true estimates of the observational and background438

error covariance then Â = 〈d̂d̂T 〉 (Desroziers et al., 2005). Here 〈·〉 denote439

the expected value. Approximations to the eigenvectors and eigenvalues of440

Â are then found by calculating the eigenvalue decomposition of441

1
M

[d̂(0), d̂(1), . . . , d̂(M−1)][d̂(0), d̂(1), . . . , d̂(M−1)]T = 1
M

D̂D̂T ≈ 〈d̂d̂T 〉. The442

pseudocode for the cluster search method can be found in Table C.10. An443

overview of where the cluster search method enters the cost-function mini-444

mization algorithm is shown in Figure 3.445

Notice that if Ns = 1 there is only one cluster and requirement (i) ensures446

that the new search direction is equal to r
(0)
i . Consequently, the clustering447

method reverts to RBCG described in section 3.1 for m = 0. If Ns = M ,448
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each column vector of Ûi constitutes its own cluster and hence the new449

search directions are multiples of the column vectors of Ûi. By construction450

the column vectors of Ûi are linear combinations of the i-th residuals from451

the different ensemble members. Consequently, span(V̂i) is equal in both452

the block diagonal CG and cluster search methods.453

In section 5, we will compare convergence rates of RBCG, full parallelisa-454

tion, and the cluster search methods in the realistic OR-WA system set-up.455

Before we can proceed with those, we next describe the wind perturbations456

that will be utilized in the tests of section 5.457

4. Wind Perturbations458

Conventionally, multiplicative ensemble inflation (Anderson and Ander-459

son, 1999) is applied to the ensemble members to compensate for the fact460

that ensembles generally fail to account for all error sources. Multiplicative461

ensemble inflation implicitly assumes that the ensemble underestimates the462

relative growth of the background errors uniformly throughout the model. In463

the Oregon-Washington region surface currents, the strength of the coastal464

upwelling (Halpern, 1976; Huyer, 1983), and the location of the fresh water465

Columbia River plume (Hickey et al., 1998, 2005; Liu et al., 2009) all depend466

on the wind forcing. Therefore uncertainty in the wind forcing is assumed to467

be the dominant source of model error. In an attempt to better approximate468

the structure and strength of the background errors, we have opted for an469

approach different from multiplicative ensemble inflation. In this approach470

physically realistic wind perturbations are added to the ensemble members471

(m = 1, . . . ,M − 1) and it is left up to the model physics to translate these472
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wind forcing errors into background errors in the ocean state. Although no473

comparison with ensemble inflation will be made, we will verify later in this474

manuscript if adding the wind perturbations helps to avoid ensemble vari-475

ance shrinking alleviating the need for the ensemble inflation (Hamill and476

Whitaker, 2005; Li et al., 2009; Whitaker and Hamill, 2002).477

The perturbed wind fields for an ensemble members are generated as478

w(t) = wNAM(t) + wL(t) + wS(t) (15)

with wNAM(t) ∈ R2Nw the vector containing the meridional and zonal wind479

velocity components from the NAM model interpolated to the Nw ROMS480

model surface grid points. Fields wL(t) and wS(t) represent the large-scale481

and small-scale wind perturbations respectively.482

For the large-scale perturbations, we use the empirical orthogonal func-483

tion (EOF) decomposition of the series w′NAM(t) = wNAM(t) − 〈wNAM〉,484

where the winds are provided every 6 hr from 1 January 2011 00:00 to 31485

December 2011 18:00 and 〈wNAM〉 is the mean wind field over this period.486

After the EOF decomposition the NAM wind field can be written as487

wNAM(t) = 〈wNAM〉+

NEOF∑
i=1

βNAM,i(t)wEOF,i + w⊥(t), (16)

where wEOF,i is the EOF mode associated with the i-th largest singular488

value, w⊥(t)TwEOF,i = 0 for i = 1, 2, . . . , NEOF and βNAM,i(t) are the EOF489

expansion coefficients associated with different EOFs and different times.490

Here, we use 10 EOFs (NEOF = 10) that explain 95% of the variance of491

wNAM in time. Similarly to Hénaff et al. (2009) and Vervatis et al. (2016),492
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we define the large-scale wind perturbation to be493

wL(t) =

NEOF∑
i=1

βL,i(t)wEOF,i. (17)

The expansion coefficients for the large-scale wind perturbations, βL,i, with494

specified standard deviation σ̂EOF,i, are generated by an AR1-process495

βL,i(t) = σ̂EOF,iεβ,i(t) for t = 0

βL,i(t) = cββL,i(t−∆t) +
√

1− c2βσ̂EOF,iεβ,i(t) for t ≥ ∆t.
(18)

Here εβ,i(t) is drawn from a standard normal distribution, ∆t = 6 h is the out-496

put time step of the NAM model and correlation coefficient cβ = 0.4 (Milliff497

et al., 2011). The two dominant wind EOFs scaled by the standard devia-498

tions of their expansion coefficients in the large-scale wind errors (σ̂EOF,i) are499

shown in Figure 4a,b.500

The standard deviation of the large-scale expansion coefficients βL,i is501

estimated based on the differences between the 6-hourly NAM model wind502

output and the daily, 25 km ASCAT satellite wind product (Figa-Saldaa503

et al., 2002; NOAA, 2011a), and NDBC buoy (numbers 46089,46015, 46050,504

46029, 46041) wind observations (NOAA, 2016). The estimate σ̂EOF,i used505

is the mode of506

p(σ2
EOF,i|wobs) =∫
p(wS, βL, εobs, σ

2
EOF,1, . . . , σ

2
EOF,NEOF

, σ2
S|wobs) dwS

×dβ
L
dεobs

∏NEOF

j=1,j 6=i dσ
2
EOF,jdσ

2
S,

(19)

the conditional probability distribution for σ2
EOF,i given all the scatterometer507

and buoy wind observations in the model domain in 2011 mapped to the508

NAM model output times (vector wobs). For the buoy observations the time-509

mapping is done by selecting the buoy wind measurement closest to the NAM510
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model output time, while the daily ASCAT observations are compared with511

the NAM model output time on the same day for which the RMSE between512

ASCAT observations and NAM model output is minimal. The conditional513

probability distribution in (19) is constructed using a Bayesian Hierarchical514

Model (BHM) similar to the one used in (Milliff et al., 2011; Wikle et al.,515

2001). The BHM consists of three stages:516

wobs(tj) = Htjwtrue(tj) + εobs(tj) (data stage)

wtrue(tj) = wNAM(tj) + wS(tj) +
∑NEOF

i=1 wEOF,iβL,i(tj) (process stage)

σ2
obs, σ

2
S, σ

2
EOF,i (parameter stage)

(20)

with the underbar denoting the concatenation of vectors taken at different517

NAM model output times tj into one vector, e.g. wS = [wS(t1); wS(t2); . . . ; wS(tNt)],518

Htj the linear operator that maps the wind velocities at time tj from the519

model grid to the ASCAT and buoy observation locations, wtrue(tj) ∈ R2Nw
520

the unknown true wind field at time tj, εobs(tj) the measurement error in521

the ASCAT/NDBC buoy wind observations, wS(tj) ∈ R2Nw the error in the522

small-scale wind field and βL,i(tj) the expansion coefficient for the i-th EOF523

mode in the large-scale error in the wind field. Prior distributions of εobs(tj),524

wS(tj), βL,i(tj), σ
2
S and σ2

EOF,i are assumed to be:525

εobs(tj) ∼ N(εobs(tj); 0, σ
2
obsI)

wS(tj) ∼ N(wS(tj); 0, σ
2
SI)

βL,i(tj) ∼ N(βL,i(tj); 0, σ2
EOF,i)

σ2
S ∼ IG(σ2

S; aS, bS)

σ2
EOF,i ∼ IG(σ2

EOF,i; aEOF,i, bEOF,i)

(21)
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where N(x;µ,C) is a normal distribution with mean µ and covariance C,526

IG(x; a, b) the inverse gamma distribution with parameters a, b (see Ap-527

pendix D for the details) and and ∼ denotes that a value or vector is528

randomly drawn from the given distribution. Any spatial structure in the529

small-scale errors wS(tj) is neglected. Based on ASCAT validation (Ver-530

speek et al., 2013) σobs is set to 0.7 m s−1. We pick aEOF,i = 1
20
Nt, bEOF,i =531

0.1aEOF,i var(βNAM,i) with Nt the number of days on which ASCAT observa-532

tions are available and var(βNAM,i) the variance of the coefficient βi in (16).533

This gives an a priori distribution for σ2
EOF,i with mode

bEOF,i

1+aEOF,i
≈ 0.1 var(βi).534

These values were chosen such that this mode corresponds to the σ̂2
EOF,i =535

0.09 var(βNAM,i) estimate used by Hénaff et al. (2009) and Vervatis et al.536

(2016). Similarly, aS and bS are chosen to be aS = 2
20
NtNw and bS = σ2

obsaS537

given the a priori distribution of σ2
S with a mode of approximately σ2

obs.538

The conditional probability distribution (19) derived using the BHM539

above is retrieved using a Gibbs sampler (see Appendix D) and is shown in540

Figure 5 for the nine dominant EOF modes. Also indicated in Figure 5 is the541

percentage of the variance in the NAM wind fields explained by each EOF.542

In addition, the 9% of this variance is shown by dashed lines, as this value543

was used in other studies to estimate σ̂EOF,i (Hénaff et al., 2009; Vervatis544

et al., 2016). Figure 5 shows that the BHM estimate for σ̂EOF,i is higher545

than the 9% estimate in all modes except mode one. The difference between546

the two estimates increases for increasing EOF number. For the higher EOFs547

(mode 4 and higher), which represent smaller spatial scales in the wind field548

(not shown), the 9% estimate severely underestimates the contribution of the549

mode to the error in the wind fields.550
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The study of scatterometer wind measurements over the Pacific Ocean551

shows that the power spectral density (PSD) of the wind field scales with κ−γ̂,552

where κ is the wave number and γ̂ ≈ 2 (Chin et al., 1998). The PSD of the553

meridional NAM wind field determined using a Hamming window (Figure 6,554

solid blue line) decreases faster than this for κ > 0.3 rad km−1 owing to555

the limited (12-km) NAM resolution. As the NAM model cannot represent556

the small-scale wind field, probable small-scale wind fields are added to the557

ensemble members. Following Wikle et al. (2001), it is assumed that the558

small-scale wind field in (15) can be decomposed into Daubechies-2 wavelets559

(Cohen et al., 1993):560

wS(t) = γ0

9∑
n=1

∑
i

γ
(n)
i (t)ψ

(n)
i (22)

with γ
(n)
i (t) coming from an AR1-process561

γ
(n)
i (t) = cγγ

(n)
i (t−∆t) +

√
1− c2γσ(n)

γ ε
(n)
i (t) (23)

Here n indicates the level of the wavelet, with the length scale of the wavelets562

doubling as the level increases with one and i running over all the wavelets563

that are available at level n. Similarly to the large-scale wind field, we use564

cγ = 0.4. This wavelet approach yields small-scale wind perturbations that565

are local in space and are simultaneously constrained to a limited spectral566

band. By experimentation, the standard deviation of σ
(n)
γ is chosen such that567

the dependence of the PSD S on the wave number κ of the total ensemble568

member wind field scales as S(κ) ∼ κ−2. This was achieved by setting569

σ
(n)
γ = exp[1.3(n − 3)](0.5 − 0.5 tanh[0.4(n − 4)]) and picking γ0 such that570

the variance of the wind speed is (0.55 m s−1)2. The PSDs for the wind571
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fields of the different ensemble members on 8 August 2011 00:00 are shown572

together with the linear least-square log-log fit to the ensemble mean PSD573

for κ > 0.1 rad km−1 in Figure 6. The fit confirms that the PSDs have indeed574

the desired PSD ∼ κ−2.0 relationship.575

5. Results576

5.1. Convergence577

The effectiveness of the cluster search algorithm using a different number578

of clusters is compared with that of RBCG and block diagonal CG. Even579

though the DA correction x(m) is only calculated after the last inner loop580

iteration i = I, the cost function (1) can be calculated for each inner loop581

iteration i if the substitution x
(m)
i = BMTHTR−1/2x̂

(m)
i is made in (1):582

J(x
(m)
i ) = 1

2
x̂
(m),T
i B̂x̂

(m)
i + 1

2
(d̂(m) − B̂x̂

(m)
i )T (d̂(m) − B̂x̂

(m)
i ). (24)

Using (5) we find that B̂x̂
(m)
i = B̂V̂iT

−1
i (V̂T

i B̂V̂i)
−1V̂T

i B̂d̂(m) which is read-583

ily available as B̂V̂i is stored. Using (24) the value of the cost function was584

calculated prior to each inner loop iteration using the cluster search method585

with different numbers of clusters (1 ≤ Ns ≤ 40). The cost function nor-586

malized by its value at the start of the minimization is shown in Figure 7a587

and b, for the windows starting on 31 May and 26 August 2011 respectively.588

Increase in the number of clusters Ns, and correspondingly the number of589

search directions at each iteration, consistently improves the rate at which590

the cost function decreases as the function of the inner loop iteration number.591

To provide a more quantitative assessment of the advantage of using several592

search directions in parallel, we compute the speed-up ratio593
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a(Ns) =
I(1)

I(Ns)
, (25)

where I(Ns) is the number of iterations needed to reach a specific refer-594

ence level of the cost function J = Jref using the cluster method with Ns595

new search directions per iteration. I(1) corresponds to RBCG. For Jref , we596

choose the value in the case using Ns = 4 and I = 12 iterations as this will597

be adopted later as the standard setup in the long-term system evaluation in598

Part 2 of this study (Pasmans et al., in preparation). The speed-up ratios are599

shown in Figure 7c and indicate, e.g., that RBCG (Ns = 1) needs approx-600

imately 30% more iterations than cluster search with Ns = 4 to reach the601

same level of cost function reduction. A fit of a 2nd order polynomial to a602

(dashed black lines in Figure 7c) shows that the coefficient for the quadratic603

term is negative and significantly different from zero at a 95% significance604

level indicating that the additional benefit of adding more clusters diminishes605

as the number of clusters increases.606

Figure 8 compares differences in the initial condition corrections between607

RBCG (Ns = 1) and the cluster search with Ns = 4 on 26 August 2011.608

As the time available to perform DA is constrained in operational settings,609

the minimization in both these two cases is terminated after I = 12 inner610

loop iterations. The plots on the left show the DA correction calculated for611

SST, surface velocity and SSH fields with Ns = 1; and the plots on the right612

show the difference between the DA corrections in the cases with Ns = 4 and613

Ns = 1. While both methods yield similar large-scale corrections, they differ614

in details at the scale of geostrophic eddies.615

For the ensemble members additional dependency on the search space616
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comes from the fact that when cluster search is used the right hand side of617

(7) is replaced by its B̂-projection on the search space. I.e., on the right-hand618

side of (7), d̂(m) is effectively replaced by V̂i(V̂
T
i B̂V̂i)

−1V̂T
i B̂d̂(m). For the619

control run this is not an issue as by construction d̂(0) lies in span(V̂1), but620

for the ensemble members this could result in the systematic elimination of a621

part of the errors contained in d̂(m). Such an elimination would result in DA622

corrections for the ensemble members that are too small and consequently an623

ensemble spread that will be too large. To test whether this is a valid concern,624

the normalized RMSE for each observation type, i.e. the RMS of the elements625

of d̂(m) associated with one type of observations, is calculated and compared626

with the RMSE after taking the B̂-projection of d̂(m) on V̂i with i = 12. If627

d̂(m) lies completely in V̂i, as is the case for m = 0, the ratio of the latter628

over the former is one. The actual ratio in the experiment is calculated for629

each ensemble member and each window and the lower bound, upper bound630

and ensemble mean are shown in Figure 9. Figure 9 shows that, as expected,631

using the projection can result in the reduction of the RMSE (up to 40%).632

However, the figure also shows that taking the projection can increase the633

RMSE. This paradoxical behaviour emerges because the projection uses the634

B̂-inner product, while in the calculation of the RMSE involves the normal,635

Euclidean, inner product. Taking the mean of the ratios over all ensemble636

members shows that increases in the RMSEs created by the B̂-projection637

mostly, but not completely, offset the reductions in RMSEs and that the net638

result is a small decrease in the RMSE of 1.7% for SST, 3.6% for HFR and639

2.8% for SSH observations. So, the projection effect might indeed result in640

overestimation of the error variances by the ensemble, but this effect is small.641
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5.2. Error Reduction642

Table 1: RMS and the mean of the difference experiment minus observations as shown in

Figure 10 and 11 for the different models and over the period 22 April to 28 September

2011.

RMSE Bias

SST HFR SSH SST HFR

[◦C] [cm s−1] [cm] [◦C] [cm s−1]

No DA 1.17 18.3 6.4 -0.18 1.5

Control analysis 0.75 10.5 3.8 -0.04 0.2

Ensemble mean analysis 0.76 9.7 3.9 -0.05 -0.2

Control forecast 0.94 13.2 4.9 -0.07 0.4

Ensemble mean forecast 0.92 11.2 4.8 -0.13 -0.1

To test whether the system is effective correcting RMSE not only for the643

control run but also for the ensemble members, the RMSE between the data644

used in the assimilation and the nonlinear analyses and forecasts is calcu-645

lated for the ensemble members as shown in Figure 10. Each line segment646

represents the RMSE in the analysis (left point) and in the forecast for the647

subsequent window (right point). Note that the forecast RMSE (right points)648

are calculated with respect to formally future observations. The En4DVar649

system is effective in reducing the RMSE: the analysis RMSE for the ensem-650

ble members exceeds that in experiment No DA (blue line) in less than 4%651

of the cases. Forecast RMSE for the ensemble members are smaller than No652

DA forecast RMSE in 73% of cases. The RMSEs for the ensemble members,653
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however, are consistently larger than those for the control run (green line)654

as they are forced with perturbed wind fields and corrected with perturbed655

observations. However, the errors introduced by the perturbations cancel out656

in the ensemble mean. Indeed, the ensemble mean RMSE lies below that of657

the ensemble members. Note that in the ensemble Kalman filter there is no658

“control run” and the ensemble mean is used as the best estimate (Evensen,659

1994). We could have used the same approach, but the additional commu-660

nication between the computational nodes required to calculate the mean661

ocean state would have increased the wall time significantly. Table 1 shows662

that the RMSE of the control run is on par with that of the ensemble mean,663

with the exception of the RMSE in the HFR observations after 14 August664

2011 (see Figure 10b). Hence, our choice to pick the control run over the665

ensemble mean to produce the forecasts will have only a limited negative666

impact on the forecast accuracy.667

Figure 11 shows the observation-model bias in experiment No DA, the668

ensemble members, the control run, and the ensemble mean. As the along-669

track mean is removed from both the altimetry observations and their model670

equivalents prior to assimilation (see section 2), the along-track mean of671

both the assimilated altimetry observations and their model equivalents is672

by construction zero. Consequently, the bias along each track, and thus in673

general, is zero and is therefore not included in Figure 11. The bias in the674

HFR observation shows a spread around zero for both the ensemble members675

as well as the control run forecasts. The bias in the forecasts predictions for676

the SST observations, however, has a negative tendency with particularly677

large negative biases during the periods 13-16 May, 5-8 June, 21-24 July,678
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26-29 August, 25-28 September 2011. This results in an overall negative679

bias over the whole period as shown in Table 1. It is indicative of either680

insufficient surface heating in the model, too much mixing in the upper layer,681

or a positive bias in the satellite observations. Further verification against682

independent in-situ observations is described in Part II.683

5.3. Ensemble Reliability684

If the ensemble statistics are truly representative of the background error685

statistics, the ensemble is said to have high reliability. A rank diagram is686

a diagnostic that can be used to test this (Hamill, 2001). Figure 12 shows687

rank diagrams for the three different types of observations. The steps to688

construct these are as follows: (a) sample each ensemble member forecast689

at the observation locations and times and add a random observation error,690

(b) for each observation, count the number of ensemble forecasts that are691

lower than the measured value, (c) by definition, this number plus one is the692

rank of the observation, (d) count the frequency of each rank and divide by693

the total number of observations to determine the normalized frequency. If694

the ensemble is reliable, the rank diagram should be flat (Hamill, 2001). The695

95%-confidence interval for the normalized frequency of a reliable ensemble is696

shown as dashed lines in Figure 12. The figure shows that the ensemble relia-697

bility is different for different fields. In the rank diagram for SST (Figure 12a)698

there is no distinctive peak. Instead the rank diagram has an upward slope.699

This can be due to the negative bias in the ensemble (see Figure 11a). For the700

HFR observations, mid-range ranks are relatively more abundant than the701

tails (see Figure 12b). This indicates that either the spread in the ensemble702

is larger than the standard deviation of the HFR background errors or that703
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the the observational error magnitude is overestimated. The opposite is the704

case for SSH observations. Here the U-shape (Figure 12c) implies that the705

forecast ensemble underestimates the magnitude of the background errors.706

Finally, estimates for the background error and observational covariances707

used in the DA system are compared with estimates obtained from the in-708

novation statistics. The relations between innovation statistics and error709

variances are given by (Desroziers et al., 2005):710 〈
(y −HM(x

(0)
b ))2d

〉
= (HMBMTHT + R)dd (26)〈

(y −HM(x
(0)
b ))d(y −HM(x

(0)
b )−HMx(0))d

〉
= (R)dd (27)〈

(HMx(0))d(y −HM(x
(0)
b ))d

〉
= (HMBMTHT )dd (28)

where 1 ≤ d ≤ D is the index of the observation and 〈·〉 denotes the expec-711

tation value, (·)d the d-th element of the vector, and (·)dd the d-th element712

on the diagonal of a matrix. The expectation values on the left-hand side713

of (26)-(28) are approximated by averaging over all observations of the same714

type in each window. These estimates are shown as blue lines in Figure 13715

(where the top, middle, and bottom plots are for (26), (27), and (28) corre-716

spondingly). An approximation to the right-hand side of (27) is obtained by717

averaging (R)dd over all the observations of the same type. For the right-hand718

side of (28) an approximation is obtained by doing the same for719

(Bens)dd
def
= (HMBMTHT )dd = 1

M−2
∑M−1

m=1 (HM(x
(m)
b )−HM(xb))

2
d

HM(xb) = 1
M−1

∑M−1
m=1 HM(x

(m)
b )

(29)

Error standard deviations based on these estimates are displayed as dashed720

black lines in Figure 13.721
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Equations (26)-(28) only hold if R and B correctly represent the true722

observational and background error covariances. Figure 13 shows to what723

extend this is the case in our system. Figure 13g,h,i show that the ensemble724

error standard deviation (black line) grows over time for all three types of725

observations and hence that the wind perturbations are sufficient to prevent726

the ensemble spread from collapsing even without ensemble inflation. For727

SST the error standard deviation estimates from the innovation statistics728

are in agreement with the specified standard deviations (see Figure 13a,d,g).729

Error standard deviation estimates for HFR observations are consistent up730

to 1 July 2011 too. After 1 July 2011, however, the total error standard731

deviation estimate is too large (Figure 13b). The standard deviations for732

the observational errors agree (Figure 13e), so the overestimation is due to733

the fact that after 1 July the ensemble background error standard devia-734

tion estimate (black line Figure 13h) is larger than the standard deviation735

error estimate based on the forecast-observation differences (blue line in Fig-736

ure 13h). This finding is consistent with the shape of the rank histogram737

in Figure 12b indicating overdispersion in the ensemble. Further investiga-738

tion (not shown here) indicates that the difference between the estimates for739

background error standard deviation can be attributed nearly entirely to the740

sparse HFR observations taken far offshore (depth > 2 km). Closer to the741

shore (depth < 1 km), where numerous, closely-spaced, HFR observations are742

available for DA to reduce the background error, the ensemble estimates for743

the observational and background error standard deviations and those based744

on (26)-(28) show good agreement (Figure 13b, light blue/grey). Initially,745

the total SSH error standard deviation estimate from R and Bens (black line746
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in Figure 13c) is smaller than the total SSH error standard deviation from the747

innovations (blue line in Figure 13c). One could put forward the hypothesis748

that this is due to the fact that the standard deviation from Bens (black line749

in Figure 13i) is smaller than the observational error estimate used in the750

DA (black line in Figure 13f) resulting in small SSH DA corrections. This751

would be a satisfactory explanation near the shore (depth < 1 km) where752

ensemble estimates for B̂ and B̂ + R remain nearly constant over time (Fig-753

ure 13i, light blue/grey). However, in general the standard deviation from754

Bens keeps increasing over time, growing beyond the specified observational755

error standard deviation of 2 cm, and (27) is not satisfied: the innovation756

statistics estimate (blue line in Figure 13f) for the observational error stan-757

dard deviation continues to lie above the specified standard deviation (black758

line in Figure 13f). Either we have underestimated the observational error759

standard deviation while specifying R or the structure of the background760

errors is such that the system cannot remove them effectively.761

6. Conclusions and Discussion762

The development of ensemble-based 4DVAR systems has been one of763

the main focus areas in numerical weather prediction. Similarly, there is a764

rationale to applying ensemble-based 4DVAR systems for oceanic prediction.765

Utility of a static B can be limiting in shelf applications. The OR-WA766

forecast system, used in this study as a test ground for En4DVar, is a good767

example where model error statistics are influenced by high temporal and768

spatial ocean state variability. Before En4DVar can be applied successfully769

to the OR-WA or any other coastal system, many technical details must be770
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worked out as outlined in this manuscript. The newly developed En4DVar771

systems need to go through statistical tests for self-consistency using actual772

observations, which help us understand the system behaviour and potential773

biases in the data.774

Critical to a successful implementation of En4DVar for large prediction775

systems will be the development of time-efficient cost function minimization776

algorithms that take advantage of the massive parallel computer architec-777

tures. The cluster search method developed and tested in this study explores778

Ns search directions in parallel at each inner loop iteration. It was found that779

using a relatively small number of parallel direction computations, Ns = 4,780

can reduce the wall clock time by 30% compared to RBCG to achieve the781

same level of cost function reduction. It can be interesting to see in future782

studies whether combination of this method with saddle point algorithms783

(Rao and Sandu, 2016; Fisher and Gürol, 2017) can deliver an even better784

4DVAR performance given the same limited number of cores.785

Our system did not employ ensemble inflation (e.g. Anderson, 2001; An-786

derson and Anderson, 1999; Hamill et al., 2001), but generated background787

errors by perturbing the wind fields in the ensemble members in a realistic788

way. Although no comparison was made with ensemble inflation, and thus789

it cannot be concluded that wind perturbations are superior to ensemble in-790

flation, no collapse of the ensemble spread was observed and therefore wind791

perturbations alleviated the need for ensemble inflation. The common as-792

sumption (Hénaff et al., 2009; Palmer et al., 2009; Vervatis et al., 2016) that793

the variance of the wind errors is proportional to the natural time-variability794

was found to be unrealistic. This possibly due to the atmospheric model795
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being less able to represent small scales, or due to the inability to represent796

all possible small-scale error modes correctly with a very limited set of EOFs.797

Instead we found using a BHM that the wind errors increase in proportion798

to the natural variability as the spatial scale of the wind error decreases.799

Based on this, we agree with the findings of Whitaker and Hamill (2012)800

that additive inflation is more suitable to representing model errors, like the801

errors in wind forcing, than multiplicative inflation in which error variances802

are assumed to be proportional to the temporal variance in the signal.803

Even though the En4DVar system was effective in reducing forecast er-804

rors compared to the case No DA, the rank diagram analysis suggests that805

the ensemble fails to represent the background error statistics perfectly: the806

ensemble overestimates the spread in the surface velocity background errors,807

while it underestimates the spread in the SSH background errors (see Fig-808

ure 12). Although the rank diagrams in Figure 12 are not uniform, the bias809

and the maximum/minimum frequency-ratio of the diagrams is not excep-810

tionally large compared to the rank diagram analyses in ensemble Kalman811

filter DA studies (e.g. Cookson-Hills et al., 2017; Fujita et al., 2007; Leeuwen-812

burgh, 2007; Meng and Zhang, 2008).813

This concludes the introduction of the new En4DVar system for the OR-814

WA system and evaluation of the error. In Part II of this study Pasmans et al.815

(in preparation) we will discuss if En4DVar yields better quality predictions816

than the traditional 4DVAR with balance operator background covariance817

currently used in the operational OR-WA system.818
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Figure 3: Overview of two (blue and green) inner loop iterations of the 4DVAR algorithm

using the cluster search method. (1) For the control run and each ensemble member the

residuals are normalized by the observation error standard deviation, (2) the EOF modes

and singular values of the residuals are determined as they provide an estimate of B̂, (3)

the EOF modes are combined using the cluster search algorithm into M ′ search directions

such that the search direction sum to the residual of the control run, (4) the ADJ, B, and

TL are applied to each search direction, (5) for each ensemble member a solution in the

shared search space is sought and new residuals are calculated (6) in the end the ADJ and

B are applied to each solution, generating a correction in the model space.
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Figure 4: (a) σ̂EOF,1wEOF,1, first EOF of the wind field scaled by the standard deviation

of the wind perturbations for this mode, (b) σ̂EOF,2wEOF,2 the second EOF of the wind

field scaled by the standard deviation of the wind perturbations for this mode, (c) wS ,

example of a small-scale wind error field for one time. Colour scale shows the wind error

speed of the different wind fields in m s−1.
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Figure 5: A priori (red) and posteriori (blue) probability density distributions for the vari-

ance of the EOF coefficients σ2
EOF,i. The variance for which the blue distribution attains

its maximum is used as estimate σ̂2
EOF,i. For reference, the values based on estimates used

previously in literature, σ̂EOF,i is 30% of the standard deviation in βNAM,i(t), is marked

by the vertical, black dashed line.
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Figure 9: The normalized forecast error RMSE, as contained in vector d̂, after B̂-projection

expressed as ratio versus the RMS of the total forecast error for (a) SST, (b) HFR and

(c) SSH observations for each DA window. Grey area shows the range of this ratio over

all ensemble members, while the black solid line marks the ensemble mean of the ratio.

Dashed black line marks the value of 1 that would be obtained if the innovation vector d̂

of the ensemble lies completely in the search space.
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Figure 10: RMSE per 3-day window for (a) SST, (b) HFR daily-averaged velocity and

(c) SSH observations from the model without DA (blue), the Control run (green), the

different ensemble members (grey) and the ensemble average (black). The left side of each

line piece marks the RMSE in the analysis, the right side the RMSE in consecutive the

forecast.
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Figure 11: The 3-day model bias (model-observations) per window for (a) SST and (b)

HFR daily-averaged velocity observations from the model without DA (blue), the control

run (green), the different ensemble members (grey) and the ensemble average (black). The

left side of each line piece marks the bias in the analysis, the right side the bias in the

forecast.
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Figure 12: Rank of the perturbed (a) SST, (b) HFR daily-averaged surface velocity and

(c) SSH observations within the ensemble.
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Figure 13: Estimates for total error variance (first row), observational error variance

(centre row) and background error variance (bottom row) based on SST observations (left

column), HFR observations (centre column) and SSH observations (right column). Blue

lines are estimates based on (26)-(28), while the black lines indicate estimates based on the

specified R and the ensemble variance. Same for the light blue (grey) lines respectively,

but now using only observations taken in water of less than 1 km depth.

50



Appendix A. SSH observations834

Let R be the track number of a set of SSH observations. A single pass of835

a SSH satellite through the domain takes at most several minutes. Therefore836

all SSH observations during this pass are assumed to have been made at the837

same time t. Here t is chosen to be the mean of the observation times during838

the pass. Let xk(R, t) be the location of the k-th observation of the SSH839

along-track R at time t. Define840

ζ ′k(R, t) = SSHA(xk(R, t), t) +MDT (xk(R, t))

+
∑8

l=1 T
−1 ∫ t1

t0
Al(xk(R, t)) cos[ωlτ − φl(xk(R, t))] dτ

(A.1)

Here SSHA(xk(R, t), t) and MDT (xk(R, t)) are respectively the detided sea-841

surface height anomaly and mean dynamic topography at location xk(R, t)842

and time t as provided by the SSH satellite data provider, ωl, Al(xk(R, t) and843

φl(xk(R, t)) are the angular frequency, amplitude and the phase of the l-th844

tidal component at location xk(R, t). Al and φl are estimated for the M2,845

S2, N2, K2, K1, O1, P1, Q1 tide by regression from the No DA model run846

using T TIDE (Pawlowicz et al., 2002). t0 is the maximum of t − 12h and847

the begin of the current DA window, t1 is the minimum of t + 12 h and the848

end of the current DA window and T = t1 − t0. Then the SSH observation849

provided to the DA system at time t and location xk(R, t) is:850

ζk(R, t) = ζ ′k(R, t)−K−1
∑
j

ζ ′j(R, t) (A.2)

with K the total number of SSH observations in track R at time t.851

The innovation corresponding to this observation is then calculated as852

d = ζk(R, t)− [ζmodel(xk(R, t), t)− T−1
∫ t1
t0
ζmodel(xk(R, t), τ) dτ ]

+ K−1
∑

j[ζmodel(xj(R, t), t)− T−1
∫ t1
t0
ζmodel(xj(R, t), τ) dτ ]

(A.3)
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By applying this procedure, we attempt to correct a non-tidal SSH slope853

along each track, but not the average level.854

Appendix B. List of Symbols855
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Symbol Equivalent Meaning

|| · ||E ||y||E =

√
yT Ây Energy norm associated with the symmetric,

strictly positive definite matrix Â.

Al(x) Amplitude of the l-th tidal component at location

x.

Â B̂ + I Covariance between the total error in the normal-

ized observations (see d̂).

aEOF,i Shape parameter in the inverse gamma distribu-

tion for σ2
EOF,i.

a(Ns) Ratio of the number of RBCG inner loop itera-

tions necessary to reach the same amount of cost-

function reduction as in the cluster search method

with Ns clusters.

aS Shape parameter in the inverse gamma distribu-

tion for σ2
S.

B Background error covariance. Covariance between

the background errors in the initial condition.

B̂ R−1/2HMBMTHTR−1/2 Covariance between the background errors in the

normalized observations (see d̂(m)).

bEOF,i Scale parameter in the inverse gamma distribution

for σ2
EOF,i.

bS Scale parameter in the inverse gamma distribution

for σ2
S,i.

cβ 0.4 AR1-process parameter used in generating large-

scale wind error EOF mode expansion coefficient

βL,i.

Table B.2: List of symbols used in the text.
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Symbol Equivalent Meaning

cβ 0.4 AR1-process parameter used in generating small-

scale wind error Debauchies wavelet coefficient

γ
(n)
i .

D Number of observations; dimension of the obser-

vation space.

Dn Set containing the indices of the singular values

that are assigned to the n-th cluster.

d̂(m) R−1/2y −R−1/2HM(x
(m)
b ) Innovations from the m-th ensemble run normal-

ized by the observational error standard devia-

tions.

D̂ [d̂(1), d̂(2), . . . , d̂(M−1)] Matrix containing normalized ensemble innova-

tion vectors as columns.

H Linear sampling operator generating model pre-

dictions that can be compared with the observa-

tions.

I Identity matrix.

J(x(m)) 1
2
x(m)TB−1x(m) + 1

2
||d̂ −

R−1/2HMx̂(m)||2
4DVAR cost-funtion for the initial condition cor-

rection x(m).

Ki(d, Â) span(d, Âd, . . . , Âi−1d) i-th Krylov space generated by Â starting from

vector d̂.

M Number of parallel nonlinear model runs, i.e. con-

trol run plus M − 1 ensemble members.

Table B.3: List of symbols used in the text. (continued)
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Symbol Equivalent Meaning

M(xb) Nonlinear ROMS model propagating initial con-

dition xb to all model output times.

M Tangent linear model linearised around the back-

ground from the control run.

M(m) Tangent linear model linearised around the back-

ground from the m-th ensemble member.

MT Adjoint model.

N Dimension of the model space.

Ns Number of clusters used in the cluster search

method.

Pn Projection operator setting the elements of a vec-

tor of which the indices are not contained in Dn

to zero.

R Diagonal observational error covariance matrix.

s(n) n-th search vector added in the current inner loop

iteration with 1 ≤ n ≤ Ns. Varies per inner loop

iteration.

T (V̂T
i B̂V̂i)

−1V̂T
i B̂ÂV̂i B̂-projection of ÂV̂ onto the search space.

Û0 Eigenvectors of the matrix D̂D̂T .

Ûi Û0 −

ÂV̂iT
−1
i (V̂T

i B̂V̂i)
−1V̂T

i B̂Û0

Difference between the eigenvectors (in Û0) and

the approximation of those eigenvectors in the

search space.

Table B.4: List of symbols used in the text (continued).
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Symbol Equivalent Meaning

v̂′ ÛT
0 r̂

(0)
0 Expansion of the initial 4DVAR residual (d̂(0))

with respect to the column vectors of Û0.

v̂′′ Expansion of the i-th residual r̂
(0)
i with respect to

the column vectors of Ûi.

V̂i Matrix with all search vectors used in the i-th

inner loop iteration as columns.

wEOF,i i-th empirical orthogonal functions obtained from

the time series of NAM model wind fields.

wL(t) Large-scale spatial wind error field at time t.

wNAM(t) Vector containing the North American Mesoscale

(NAM) model wind field at time t interpolated

onto the ROMS model grid.

wobs(t) Vector containing the ASCAT scatterometer and

NOAA buoy wind observations at time t.

wS(t) Small-scale spatial wind error field at time t.

x(m) x(m) = BMTR−1/2x̂(m) 4DVAR correction to the initial conditions in the

model space. I.e. correction that minimizes cost-

function J .

x̂(m) 4DVAR correction to the initial conditions before

mapping to the model space.

x̂
(m)
i Approximation to x̂(m) obtained after the i-th in-

ner loop iteration.

Table B.5: List of symbols used in the text (continued).
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Symbol Equivalent Meaning

x
(m)
ana x

(m)
b + x̂(m) Ocean model state vector at the beginning of the

DA window after the 4DVAR correction x(m) has

been applied.

x
(m)
b Initial condition for the DA window prior to ap-

plication of the 4DVAR correction for ensemble

member m.

X̂i [x̂
(0)
i , x̂

(1)
i , . . . , x̂

(M−1)
i ] Matrix having the approximation to x̂(m) obtained

after the i-th inner loop iteration as m+ 1-th col-

umn.

y Vector having the observed values

(SST,SSH,HFR) as elements.

αn Coefficient in front of s(n) in x̂
(0)
i+1− x̂

(0)
i . Changes

in each inner loop iteration.

α̂n Estimator of αn that miminizes the error in es-

timate x̂
(0)
i+1 in the energy norm, i.e. value that

minimizes ||x̂(0) − x̂
(0)
i −

∑Ns

n=1 αns
(n)||E

βL,i(t) EOF expansion coefficient for the i-th EOF mode

in the large-scale wind error at time t.

βNAM,i EOF expansion coefficient for the i-th EOF mode

in the NAM model wind fields at time t.

γ
(n)
i (t) Coefficient for the i-th Debauchie wavelet at the

n-th level in the small-scale wind error field at

time t.

εobs(t) Observational error in the wind velocity wobs(t)

observations.

Table B.6: List of symbols used in the text (continued).
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Symbol Equivalent Meaning

ζ Sea-surface height

Λ̂ Diagonal matrix with eigenvalues of Â on the di-

agonal.

λd d-th eigenvalue of matrix Â.

Ξ Diagonal maxtrix having ξd on its diagonal.

ξd Ratio of the norm of the d-th column of Û0 over

the norm of the d-th column of Ûi.

σ2
EOF,i Variance in βL,i(t), equal to the variance of the i-

th EOF mode in the time-series for the large-scale

wind errors.

σ̂2
EOF,i Estimator for σ2

EOF,i.

σ2
obs Variance of the observational error in the ASCAT

and NOAA buoy wind observations.

σ2
S Variance of the small-scale wind errors, i.e. the

elements of wS(t).

φl(x) Phase of tidal component l at location x.

ωl Angular frequency of the l-th tidal components.

Table B.7: List of symbols used in the text (continued).
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Appendix C. Pseudocode Minimization Algorithms856

Table C.8: Pseudocode for RBCG using (6) for ensemble member m.

V̂0 = [ ]; Ŵ0 = [ ]; r̂ = d̂(m)

for i = [1 : I]

V̂i = [V̂i−1, r̂]

Use AVRORA TL-ADJ to calculate Ŵi = [Ŵi−1, B̂r̂(m)]

ÂV̂i = Ŵi + V̂i

T = (V̂T
i Ŵi)

−1ŴT
i (ÂV̂i)

p = T−1(V̂T
i Ŵi)

−1ŴT d̂(m)

x̂(m) = V̂ip and B̂x̂(m) = Ŵip

r̂(m) = d̂(m) − B̂x̂(m) − x̂(m)

end for

Use AVRORA ADJ to calculate correction x(m) = BMTR−1/2x̂(m)
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Table C.9: Pseudocode for block diagonal CG with B-preconditioning using (6).

Initialize V̂0 = [ ] and Ŵ0 = [ ]

Set D = [d̂(0), d̂(1), . . . , d̂(M−1)] and S = D̂

for i = [1 : I]

V̂i = [V̂i−1,S]

parfor m = [1 : M ]

Take r̂ to be the m-th column vector of S

Use AVRORA TL-ADJ to calculate w(m−1) = B̂r

end parfor

Ŵi = [Ŵi−1, w(0),w(1), . . . ,w(M−1)]

ÂV̂i = Ŵi + V̂i

T = (V̂T
i Ŵi)

−1ŴT
i (ÂV̂i)

P = T−1(V̂T
i Ŵi)

−1ŴT D̂

X̂ = V̂iP and B̂X̂ = ŴiP

S = D̂− B̂X̂− X̂

end for

parfor m = [0 : M − 1]

Let x̂(m) be the m+ 1-th column of X̂

Use AVRORA ADJ to calculate correction x(m) = BMTR−1/2x̂(m)

end parfor
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Table C.10: Pseudocode for the cluster search method. ej is a unit vector in direction j.

Initialize V̂0 = [ ] and Ŵ0 = [ ]

Set D = [d̂(0), d̂(1), . . . , d̂(M)] and r = d̂(0)

Use SVD to decompose 1√
M

D = ÛΛZT . Discard Z

Set Û′ = Û

Calculate v̂′′ = ÛT d̂(0)

for i = [1 : I]

for m = [1, 2, . . . ,M ]

ξm = (Ûem)T (Û′em)

end for

v̂′ = ÛT r

Get D1, D2, . . . , DNs = func cluster(Λ,v′,v′′, ξ)

for n = [1 : Ns]

s(n) =
∑

j∈Dn
(Û′ej)(e

T
j v′′)

end for

V̂i = [V̂i−1, s
(1), . . . , s(Ns)]

parfor n = [1 : Ns]

Use AVRORA TL-ADJ to calculate w(n) = B̂s(n)

end parfor

Ŵi = [Ŵi−1, w(1),w(2), . . . ,w(Ns)]

ÂV̂i = Ŵi + V̂i

T = (V̂T
i Ŵi)

−1ŴT
i (ÂV̂i)

P = T−1(V̂T
i Ŵi)

−1ŴT D̂ and Q = T−1(V̂T
i Ŵi)

−1ŴT Û

X̂ = V̂iP and B̂X̂ = ŴiP

U′ = Û− ŴiQ− V̂iQ

r = d(0) − (B̂X̂ + X̂)e1

end for 61



Table C.10: Pseudocode for the cluster search method. ej is a unit vector in direction j

(continued).

parfor m = [0 : M − 1]

Let x̂(m) be the m+ 1-th column of X̂

Use AVRORA to calculate correction x(m) = BMTR−1/2x̂(m)

end parfor

function [D1, D2, . . . , DNs ] = func cluster(Λ, v̂′, v̂′′, ξ)

Calculate weight wm = v′′2mξ
2
mλ

4
m(1− λ−2m ) with λm = (Λ)mm, ξm = eTmξ,

and v′′m = eTmv′′.

Set zm = v′m
v′′mξmλ

2
m

with v′m = eTmv′

for m = [1 : Ns]

zm = min(z) + 1
Ns

(m− 1
2
)(max(z)−min(z))

end for

for j = [1 : 1000]

(Re)initialize D1, D2, . . . , DNs = [ ]

for m = [1 : M ]

Find l that minimizes |zl − zm|

Dl = [Dl,m]

end for

for m = [1 : Ns]

zm = (
∑

l∈Dm
wmzm)(

∑
l∈Dm

wm)−1

end for

end function
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Appendix D. Estimation Conditional Distribution σEOF,i857

The integral on the right-hand side of the conditional probability distri-858

bution σ2
EOF,i (19)859

p(σ2
EOF,i|wobs) =∫
p(wS, βL, εobs, σ

2
EOF,1, . . . , σ

2
EOF,NEOF

, σ2
S|wobs) dwS

×dβ
L
dεobs

∏NEOF

j=1,j 6=i dσ
2
EOF,jdσ

2
S

(D.1)

is approximated by drawing 500 samples of distribution (19) with860

s = (wS, βL, σ
2
β1
, . . . , σ2

βNEOF
, σ2

S) from distribution (19) p(s) followed by the861

creation of a normalized histogram of σ2
EOF,i from these samples. The sam-862

pling is carried out using a Gibbs sampler (Casella and George, 1992) and863

consists of sequentially drawing components of s under the condition that864

the other components remain constant. I.e., a new sample865

s′ = (w′S, β
′
L
, σ′2EOF,1, . . . , σ

′2
EOF,NEOF

, σ′2S ) is constructed from the previous866

sample s = (wS, βL, σ
2
EOF,1, . . . , σ

2
EOF,NEOF

, σ2
S) by sequentially drawing867

1. for each tj868

β′L(tj) ∼ p(β′L(tj)|wobs,wS,Σ
2
EOF , σ

2
S)

∼ p(wobs(tj)|β′L(tj),wS(tj),Σ
2
EOF , σ

2
S)

× p(β′L(tj)|wS(tj),Σ
2
EOF , σ

2
S)

∼ N(wobs(tj)−HtjwNAM(tj)−HtjWβ′L(tj)

−HtjwS(tj); 0, σ
2
obsI)N(β′L(tj); 0,Σ

2
EOF )

∼ N(β′L(tj);σ
−2
obsCWTHT

tj
[wobs(tj)−HtjwNAM(tj)

−HtjwS(tj)],C)

with C−1 = σ−2obsW
THT

tj
HtjW + Σ−2EOF

(D.2)
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2. for each tj869

w′S(tj) ∼ p(w′S(tj)|wobs,w
′
EOF ,Σ

2
EOF , σ

2
S)

∼ p(wobs(tj)|w′S(tj), β
′
L(tj),Σ

2
EOF , σ

2
S)

× p(w′S(tj)|β′L(tj),Σ
2
EOF , σ

2
S)

∼ N(wobs(tj)−HtjwNAM(tj)−HtjWβ′L(tj)

−Htjw
′
S(tj); 0, σ

2
obsI)N(w′S(tj); 0, σ

2
SI)

∼ N(w′S(tj);σ
−2
obsCHT

tj
[wobs(tj)−HtjwNAM(tj)

−HtjWβ′L(tj))],C)

with C−1 = σ−2obsH
T
tj
Htj + σ−2S I

(D.3)

3. for each i = 1, 2, . . . , NEOF :870

σ′2EOF,i ∼ p(σ′2EOF,i|wobs, β
′
L
,w′S, σ

2
S)

∼ p(β′
L,i
|σ′2EOF,i)p(σ′2EOF,i)

∼ N(β′
L,i
|0, σ′2EOF,i)IG(σ′2EOF,i|aEOF,i, bEOF,i)

∼ IG(σ′2EOF,i|aEOF,i + 1
2
Nt, bEOF,i + 1

2

∑
j β

2
EOF,i(tj))

(D.4)

4.

σ′2S ∼ p(σ′2S |wobs, β
′
L
,w′S,Σ

′2
EOF )

∼ p(w′S|σ′2S )p(σ′2S )

∼ N(w′S|0, σ′2S I)IG(σ′2S |aS, bS)

∼ IG(σ′2S |aS +NtNw, bS + 1
2

∑
j ||w2

S(tj)||2)

(D.5)

with wobs(tj) the ASCAT and buoy wind observations at time tj, wNAM(tj)871

the NAM model wind field at time tj interpolated onto the ROMS model872

grid, Htj the operator that interpolates the wind field to the observation873

locations at time tj, εobs(tj) the measurement error in the ASCAT/NDBC874

buoy wind observations, wS(tj) ∈ R2Nw the error in the small-scale wind field875

and βEOF,i(tj) the contribution of the i-th EOF to the large-scale error in876
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the wind field, βEOF,i the expansion coefficient of the large-scale wind errors,877

Σ the diagonal matrix having σEOF,1, . . . , σEOF,NEOF
on its diagonal and W878

the matrix having wEOF,i as its i-th column. The denotes that a value is879

randomly dran from a distribution, N(x;µ,C) = (2π)−
1
2
D det(C)−

1
2 exp ( −880

1
2
(x− µ)TC−1(x− µ)) is a normal distribution with mean µ and covariance881

C and IG(x; a, b) = Γ(a)−1bax−a−1 exp(− b
x
) the inverse gamma distribution882

with scale parameters a, b. In the second lines of (D.2)-(D.5) Bayes’ theorem883

has been used. In order to insure that the samples generated are uncorrelated884

10000 samples are generated with the Gibbs sampler, but only every 20th885

sample is retained.886
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